Polynomial Chaos for Analysing Periodic Processes of Differential Algebraic Equations with Random Parameters
نویسندگان
چکیده
منابع مشابه
Polynomial Chaos for Linear Differential Algebraic Equations with Random Parameters
Technical applications are often modeled by systems of differential algebraic equations. The systems may include parameters that involve some uncertainties. We arrange a stochastic model for uncertainty quantification in the case of linear systems of differential algebraic equations. The generalized polynomial chaos yields a larger linear system of differential algebraic equations, whose soluti...
متن کاملPolynomial Chaos for Semiexplicit Differential Algebraic Equations of Index 1
Mathematical modeling of technical applications often yields systems of differential algebraic equations. Uncertainties of physical parameters can be considered by the introduction of random variables. A corresponding uncertainty quantification requires one to solve the stochastic model. We focus on semiexplicit systems of nonlinear differential algebraic equations with index 1. The stochastic ...
متن کاملPolynomial Chaos Expansions for Random Ordinary Differential Equations
We consider numerical methods for finding approximate solutions to Ordinary Differential Equations (ODEs) with parameters distributed with some probability by the Generalized Polynomial Chaos (GPC) approach. In particular, we consider those with forcing functions that have a random parameter in both the scalar and vector case. We then consider linear systems of ODEs with deterministic forcing a...
متن کاملNumerical solution and simulation of random differential equations with Wiener and compound Poisson Processes
Ordinary differential equations(ODEs) with stochastic processes in their vector field, have lots of applications in science and engineering. The main purpose of this article is to investigate the numerical methods for ODEs with Wiener and Compound Poisson processes in more than one dimension. Ordinary differential equations with Ito diffusion which is a solution of an Ito stochastic differentia...
متن کاملDynamical Polynomial Chaos Expansions and Long Time Evolution of Differential Equations with Random Forcing
Polynomial chaos expansions (PCE) allow us to propagate uncertainties in the coefficients of differential equations to the statistics of their solutions. Their main advantage is that they replace stochastic equations by systems of deterministic equations. Their main challenge is that the computational cost becomes prohibitive when the dimension of the parameters modeling the stochasticity is ev...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: PAMM
سال: 2008
ISSN: 1617-7061,1617-7061
DOI: 10.1002/pamm.200810069